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Abstract—The cross sectioms of most TEM mode transmission lines

have reentrant corners or edges where the potential gradient is singular.

In this paper the accnracy of the finite-difference solution for the eleetric

field normal to the conductor boundary at a right-angle corner and at the

edge of a thin plate is examined. The accuracy of the finite-difference soln-

tion is related to the mesh length h, the magnitude of the lattice point

residuals, and the finite-difference operator which is used in place of the

Laplacian differential operator. Tbe computing time required to solve the

mesh equations by the method of successive overrelaxation is specified.

The surface charge density in the neighborhood of the boundary singn-

Iarity is expressed as a truncated series of circnIar harmonics. As a result,

the integral of the surface charge can be calculated with very good ac-

curacy. The paper concludes by using the harmonic series treatment to

determine the capacitance per unit length of a square coaxial transmission

line.

I. INTRODUCTION

T

HE CHARACTERISTIC impedance and attenua-

tion constant of TEM mode transmission lines can be

determined with considerable facility by the method

of finite differences. Green [l] and Schneider121 have pub-

lished solutions obtained by the finite-difference technique

for some particularly difficult stripline configurations. The

author has used this method to determine the even and odd

mode impedances of offset parallel-coupled strip transmis-

sion lines. These data were used in the design of a tapered-

line hybrid junction which operates over a frequency band-

width of 0.7 to 12.5 GHz. 131Getsinger141 and Sheltonr61 have

published approximate solutions for infinitely thin conduc-

tors in the offset configuration which were obtained by the

mapping approximation method. Recently, Carson and

Cambrell(bl used a variational formula (field energy integral)

in conjunction with the finite-difference method to calculate

characteristic impedance.

When one treats a potential problem by the finite-differ-

ence method he is immediately faced with the perplexing

task of estimating the accuracy of the numerical solution.

For most problems of interest, there is no theoretical error

bound available because practical transmission lines usually

have boundaries with sharp edges or reentrant corners where

the potential gradient is singular. All estimates of the mesh

or “discretization error” depend on the continuity of higher-

order partial derivatives and these estimates fail when the
gradient is singular on the boundary. [T] The finite-difference

solution is inaccurate near the field singularity and the error

spreads to neighboring mesh points. As a result, special treat-
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ment is required to obtain accurate results near reentrant

corners. This is particularly important, for example, when

calculating the attenuation constant of the line where one

must integrate the normal electric field over the conductor

boundaries.

In this paper we have investigated the accuracy of the

finite-difference solution for the potential gradient along the

conductor boundary near a reentrant corner. For this pur-

pose we have selected the infinite right-angle bend and the

semi-infinite plate between parallel ground planes because

each configuration may be solved exactly by means of con-

formal mapping. Thus the finite-difference solution and the

exact solution may be compared to determine the error dis-

tribution near the field singularity. Moreover, the accuracy

of the finite-difference solution may be exhibited as it relates

to the mesh length h, the absolute magnitude of the lattice

point residuals, and the finite-difference formulas which are

used in place of the Laplacian operator.

In order to improve the numerical solution in the vicinity

of reentrant corners we have followed Motz’s earlier work[gl

and written a harmonic series expansion for the field in the

neighborhood of the singularity. The series expansion yields

the correct singular behavior of the field at the boundary

corner. The series coefficients are specified by equating the

series expansion to the potential gradient at selected points

on the boundary. Thus the normal electric field (or surface

charge density) is accurately determined in the entire neigh-

borhood of the corner and the integral of the charge density

can be calculated to an accuracy of a fraction of a percent,

The paper concludes by using the harmonic series treatment

to arrive at the capacitance per unit length of a square co-

axial transmission line. The results are compared to the

exact solution available from conformal mapping.

II. THE FINITE-DIFFERENCE METHOD

The electrical parameters of the TEM mode transmission

line follow from the solution of Laplace’s equation

A~=~+$=O (1)

over the two dimensional domain comprising the transverse

cross section of the line. [101 The approximate solution of

Laplace’s equation by the finite-difference method is effected

by superposing a square lattice or mesh over the region and

solving the system of equations for the potential @(xj, y~) at

the discrete nodes which are the intersection points of the

lattice. In Fig. 1 we show a portion of the square mesh using

a simple subscript notation to identify the lattice points of
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Fig. 1. Finite-difference lattice.

the subregion. The coordinates (x;, yJ of a lattice point are

defined b~

Xj = XII + jh,

!/k = !/0 + W j,k=o, *l, +2,..., (2)

where (xo, yo) is an arbitrary origin for the “mesh coordi-

nates” (j, k) and h is the mesh length between adjacent lat-

tice points. By definition @j,k is the pOtential at node (xj, ~k)

and, for example, dj+l,~–l is the potential at the node

(Xj+h, yk–k).
The five-point Laplace difference operator is defined

A(5J@ = A [+j-,,h + @j,,+, + @j,k-1 + @~+l,k – 44’i,~]. (3)
h,

The nine-point operator, which includes the potentials at

the four diagonal lattice points, is defined

A(9J0 = ~ [4(&l,h + dj,~+l + ~j+l,k + #Lk-1)
6h2

+ (@j–1,k–1 + #V+l,k+l + @f–l,k+l

+ @i+l,k-1) – z@’V,k]. (4)

Expressing the node potentials in infinite series using Tay-

lor’s formula, Kantorovich and Krylov[’11 derive the follow-

ing expansions for the five- and nine-point operators:

‘(’)’= A’+%(:+;)+ (5)

40 h6 Wp
A(9)@ = A@ + — —

()

—---+
3 8! ~X4~y4
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. . . . (6)

Because @is harmonic and satisfies A@= O, (5) indicates that

the error committed in writing A(5)4 = O to determine qi,~ is

of order hz as h tends to zero. Correspondingly, (6) indicates

an error of order W in A(gh$= O. However, both (5) and (6)

assume the continuity of higher-order partial derivatives of

4 over the square region [xi–h, xi+h], ~~–h, y~+h]. Be-

cause the potential gradient is singular at a reentrant corner,

(5) and (6) are not applicable at the nodes immediately adja-

cent to the corner and it is not apparent which operator

would yield the more accurate results. As noted, the effect

of the boundary singularity spreads to neighboring mesh

points and, in terms of h, the order of magnitude of the dis-

cretization error is unknown. To quote from Forsythe and

Wasow,[sl “There is some numerical evidence that re-entrant

angles may actually modify the order of magnitude of the

discretization error globally.” This view is substantiated in

results presented in Section III, where it is shown that the

five-point formula yielded solutions more accurate than the

nine-point formula when calculating the potential gradient

about a 90 degree corner.

The formula for computing the potential d~,~ using the

approximation A(5J4= O follows from (3):

The system of equations generated by (7) was solved by the

Young-Frankel method of successive overrelaxation. [121[181

The acceleration parameter a which appears in the succes-

sive overrelaxation formula was determined in the course of

iteration as proposed by Carr6. 1141The potential at each lat-

tice point was computed in sequence by advancing from the

bottom to the top of the mesh in each column of nodes and

from left to right in successive columns. A complete scan-

ning of the region constitutes one iteration cycle. Let the

superscript (n) denote the current iteration cycle and, there-

fore, (n– 1) denotes the previous cycle. As a result of the lat-

tice point scanning sequence, the successive overrelaxation

formula for A(6J0 reads

(8)

For the five-point operator, the residual ~l,h at an interior

node (xj, ~h) is defined

6j,k = (~j-1,. + ~j,k+l + @j,k-1 + @j+l,k – 4~j,k). (9)

The iterative process was terminated by requiring that all

node residuals satisfy
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where the positive constant rn=lCFP, with p in the range

2<p< 6. The maximum boundary potential for the regions
a

was unity. Thus, the residuals were reduced to a magnitude

of from 1.0 to 0.0001 percent of the maximum boundary po-

tential. Expressions similar to (7), (8), and (9) for the oper-

ator At9J@follow from (4).

The mesh error, which is a function of the mesh length h,

occurs because the finite-difference operator is used in place

of the Laplacian. In addition to the mesh error, the finite-

difference solution is subject to “iteration error” because the

system of linear equations is not solved exactly by the itera-

tive process. Let p be the radius of a circle with center at

-— -- ——
+

Q’

node (xO,yJ which just encloses the region of the mesh prob- .#I=o J
I

lem. Milne[151 shows that if the maximum residual I ~j,k I ~..
c

P

does not exceed a positive quantity m, the maximum error

in the iterative solution does not exceed mp2/4h2 for the five-

point operator and mP2/24h2 for the nine-point operator.

These results indicate that as one uses a finer mesh (larger

p/h) in order to reduce the mesh error, the maximum resid-

ual m must be decreased proportionately (leading to more

iteration cycles) in order to satisfy the same iteration error

bound.

(a)
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III. COMPARISON OF SOLUTIONS i
n

1:

With the preceding discussion of the error problem in

mind, we shall compare the numerical finite-difference solu-

tion and the exact solution obtained from conformal map-

ping for the two geometrical cross sections shown in Fig. 2.

The characteristic dimensions of the infinite right-angle bend

and the semi-iniinite plate between conducting planes, as

well as the boundary conditions on the potential O, are given
in the figure, The exact solution of Laplace’s equation for

each boundary value problem is obtained by applying the

Schwarz-Christoffel transformation to the respective z-plane

polygon. [161

We shall examine the electric field intensity [ &j/8n [ nor-

mal to the conducting boundary Q’ C’P’ of the right-angle

bend. The field intensity is singular at the 90 degree re-

entrant corner which is vertex C’. In order to carry out the

finite-difference method, the potential must be specified at

all nodes on the boundary surrounding the region. Thus

+= O at nodes along QCP and+= 1 at nodes along Q’C’P’.
A linear potential distribution progressing from zero to unity

was specified for the nodes along boundaries PP’ and QQ’.

As a result, the potential gradient at vertices P’ and Q’ has

the value I/b and I/g, respectively. If we then specify the

side lengths CP and CQ by the relations

CP = g + 2.7b,

(7Q = b + 2.7g (11)

it results that the potential gradient at the locations P’ and

Q’ is in error by less than 0.01 percent of the exact solution.

In the case of the semi-infinite plate between parallel

planes, we shall examine the potential gradient normal to

the boundary surface CD. Because of the symmetry of the

I
L

ft. = o i 1

9 A

(b)

Fig. 2. (a) Infinite right-angle bend. (b) Semi-infinite
plate between parallel planes.

crossnsection, the finite-difference procedure may be applied

to only one-half of the figure, the polygon ABCDEF, for

example. A linear potential distribution was prescribed for

nodes along boundary BC with the length CD= 2.7 BC
= 2.7(d– f)/2. The potentials at nodes along EF were de-

termined in the course of iteration under the condition that

EF is a magnetic wall or plane of symmetry of the potential

field. The potentials at nodes along AF were set equal to

zero. By specifying the length EF= 2.8d, it follows from the

conformal mapping solution that the error in the node poten-

tials along AF is not greater than 0.01 percent.

The potential gradient normal to the boundary surface

was calculated using a five-point formula given by Bickley, [171

E@ — ~ [5040 – 96A + 724, - 32A+ 64,] (12)
t)n – 24h

where +0, +1, . 0 . , 01 are the potentials at successive nodes

in the direction normal to the boundary with 00 designating

the boundary potential. The error in this formula is of order

hb,where the mesh length h is the tabular interval.

The right-angle bend was solved by successive overrelaxa-

tion using the five-point and nine-point difference operators.

Typical results are given in Fig. 3 which shows the percent

error in the potential gradient normal to the boundary

Q’C’P’ for an asymmetrical bend where g= 2b and b/h= 16.
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Fig. 3. Percent error in [d4/dn / about a 90 degree corner (g= 2b).

The abscissa is distance measured from the corner in terms

of the mesh length h. The surprising result evident in Fig. 3

was substantiated in all calculations of the right-angle bend,

that is, that the five-point operator yielded the more accurate

solutions. When the semi-infinite plate was treated, the two

operators were not compared, only the five-point operator

was used. Fig. 3 also serves to demonstrate the increasing

error in the finite-difference solution as the corner singularity

is approached (r, PO).

We are interested in the accuracy that can be realized for

a given amount of computing time. The machine time re-

quired by the finite-difference method is directly proportional

to the number of interior nodes which are scanned per

iteration cycle and, of course, the number of cycles that are

necessary to satisfy the residual criterion. The number of

interior nodes is a function of the mesh division. When the

mesh length is halved in order to reduce the mesh error, the

number of interior nodes increases by more than a factor of

4, and the computing time increases proportionately. More-

over, when the mesh is made finer, more iteration cycles are

necessary to satisfy the same residual criterion. In the tables

which follow, we shall examine the accuracy of the finite-

difference solution and the resultant computing time as they

are determined by the mesh size and the residual test con-

stant m= IO–P. All calculations were carried out using the
five-point operator.

In Table I we show the percent error in 18@/&z I as a

function of the mesh size for the symmetrical right-angle

bend (g= b). The potential gradient is calculated at selected

positions r/b along the boundary C’P’. The residual test

constant m= 10–6. The column b/lz = m corresponds to an

estimate of the solution for zero mesh length and was ob-

tained using Richardson’s method of extrapolation[lsl in

which we assume that the mesh error is proportional to hz.

Obviouslyj this procedure is questionable for problems with

reentrant corners. The extrapolated solution, which was cal-

culated from the b/h= 16 and b/h= 32 solutions, was found

to be only slightly improved over the b/h= 32 result.

The machine times required to effect solutions for various

mesh divisions are given in Table II, which shows the number

of interior nodes for a given b/h and the number of iteration

cycles necessary to satisfy the residual test \ ~j,~ ] < 10_4.

Notice that the computing times of Table II do not apply

to the results shown in Table I which were obtained under

the condition m= 10+. The times shown include all of the

calculations which were required to compare the numerical

and the exact solutions. The computer was an IBM 7094.

Notice how the number of iteration cycles increases as the

mesh is made finer in order to satisfy the same residual

criterion m= 10–4.

The effect of m on the finite-difference solution is indicated

in Table 111 which shows the percent error in I do/dnl at

various positions r/b for three values of m. These data are

for the mesh division b/h= 32 which yields 6355 interior

nodes. Notice that the normal gradients are more accurate

when m= l&4 than when m= I&b, although the error de-

creases monotonically with increasing r only for the case

m= 1(36. When the coarse mesh b/h= 8 with 357 interior

nodes was used, the solutions for m= l&4 and 1(P were

identical. The case m= l&2 was not calculated but pre-

sumably it was the same.

The computing time varies substantially with m when a

relatively fine mesh is used. Table IV shows computing time

as a fhnction of m for the mesh division b/h= 32. Notice that

the time is doubled by decreasing m from 10_4 to 10-6 al-

though Table III shows that m= 10_4 yielded the more accu-

rate results. When the coarse mesh b/h = 8 was used, the

number of iteration cycles was essentially the same for

m= ICF4 and m= lCP, consequently, the machine time was

identical.

In Tables V through VIII, we present information similar

to the foregoing but the data pertain to the semi-infinite plate

between parallel planes. In all cases the plate thickness

t= d/ 10. Table V shows the pereent error in I ~@/&z I at

selected positions r/d along the boundary CD. The residual

test constant m= IN. The column d/h= co corresponds to

the extrapolated solution (assuming mesh error of order hz)
obtained from the d/h =20 and d/h =40 solutions. As may

be seen, the extrapolated solution is only slightly more accu-

rate than the d/h =40 solution.

The number of iteration cycles and the machine time
necessary to obtain the solutions of Table V are shown in

Table VI. Notice that the computing time increases by a

factor of 13 when the mesh division changes from d/h= 40

to d/h= 100. However, as Table V shows, the reduction in

mesh error effected with d/h = 100 is not commensurate

with the inordinate increase in machine time.

Table VII shows the effect of m, on the accuracy of the

solution for the mesh division d/h = 100 which yields 19318

interior nodes. The distribution of error with m is quite

similar to the data of Table III which applies to the right-

angle bend with 6355 interior nodes. Notice that m= 10+
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TABLE I TABLE V

PERCENTERROR IN [&#J/13nI RIGHT-ANGLE BEND g= b rn = 10-6 PERCENTERROR IN ]~4/&21, SEMI-INFINITE PLATE, t=d/10, m= 10-6

\
b/h

r/b \

0.125

0.250
0.375
0.500
0.750
1.000

m1008 16 32 \
d/h

‘id \

20

2.506
1.088
0.866
0.629
0.431
0.289
0.192

40

1.241
0.879
0.522
0.318
0.202
0.131
0.087
0.058

02

0.05
0.10
0.15
0.20
0.25
0.30
0.35

1.88 1.00 0.832
0.689 0.695 0.344
0.570 0.394 0.174
0.410 0.227 0.098
0.169 0.084 0.036
0.063 0.032 0.014

0.775
0.228
0.100
0.055
0.021
0.0076

0,778
0.317
0.167
0.099
0.062
0.040
0.025
0.016

0.819
0.809
0.408
0.214
0.125
0.079
0.052
0.0350.40 j 0.128

TABLE II

NUMBER OF ITERATION CYCLESAND COMPUTING TIME, rABLE VI

RIGHT-ANGLE BEND, g= b, m = 10-4 NUMBER OF ITERATION CYCLESAND COMPUTING TIME, SEMI-
INFINITE PLATE, ~= d/10, m= 10-6, I

b/h I Interior I Iteration I Time
Nodes Cycles (s) Iteration Time

Cycles (s)
—

97 7
217 53
493 702

d/h
Interior
Nodes

750
3053

19318

8 357 49 5
16 1545 73 25
20 2413 85 43
32 6355 109 48

20
40

100

TABLE 111 TABLE VII

PERCi?NTERROR IN ]E@/&-I], RIGHT-ANGLE BEND, g= b, b/h =32 PERCENT ERROR IN I ti4/an 1, SEMI-INFINITE PLATE, t= d/10, d/h= 100

——

\

rlb ‘L 10-2 10-4

\

m

r/d

10-4 10-6 10-2 10-6

1.25
0.960
0.631
0.435
0.317
0.241
0.188
0.150
0.122
0.099
0.040
0.016

0.0625
0.125
0.1875
0.250
0.3125
0.375
0.4375
0.500
0.5625
0.625
0.6875
0.750

0.406
0.139
0.139
0.285
0.354
0,380
0.379
0.361
0.332
0.295
0.256
0.219

0.871
0.593
0,308
0.152
0.072
0.030
0,008
0.004
0.010
0.011
0.011
0.013

1.131
0.832
0.523
0.344
0.240
0.174
0.129
0.098
0.076
0.059
0.046
0.036

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.30
0.40

5.43
5.10
4.94
4.72
4.46
4.19
3.94
3.70
3.47
3.26
2.39
1.81

0.688
0.463
0.184
0.031
0.048
0.089
0.112
0.123
0.126
0.126
0.100
0.072

TABLE IV TABLE VIII

NUMBER OF ITERATION CYCLESAND COMPUTING TIME, NUMBER OF ITERATION CYCLESAND COMPUTING TIME, SEMI-

RIGHT ANGLE BEND, g= b, b/h =32 INFINITE PLATE, t=d/10, d/h= 100

I Interior I Iteration
m I Time

Nodes Cycles (s) I Interior
m Nodes

Iteration
Cycles

Time
(tin)

— —
10-2 6355 97 44
10-4 6355 109 48
10-0 6355 169 96

10-2 19318
10–4 19318
10-6 19318

97 3.10
205 5.45
493 11.7

I
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TABLE IX

PBRCENTERROR IN 18@/an1, S~MI-INFINrrE PLATR, d/11= 100, m = 10~

\

t/d
0.02

r/h

1 2.91
2 1.76
3 1.62
4 1.39
5 1.15
6 0.95
7 0.80
8 0.68
9 0.59

10 0.51

—

0.04

2.65
1.46
1.35
1.15
0.95
0.78
0.65
0.55
0.47
0.41

0.10

2.42

1.25

1.14
0.96

0.78

0.63

0.52

0.43

0.37
0.32

yields the more accurate results until r measures 18 mesh

lengths from the plate edge (r/d= O.18), thereafter, the solu-

tions for m= 10+ are more accurate but the difference is not

particularly significant. The difference in computing time

between the cases m= 10--4 and m= 1(P is, however, very

significant as is evident in Table VIII. Obviously, m= 1O-+

is not an adequate residual requirement for a mesh division

which yields thousands of lattice points. In contrast to

Table VII, when the coarse mesh d/lz= 20 was used to solve

the semi-infinite plate problem, the solutions for m= IO-Z,
l&4, and l&b were almost identical over the entire range of

r which was investigated (Os r/dS 0.5). The computing time

was about 7 seconds for each value of m when d/h= 20.
Lastly, in Table IX, we show the error distribution that re-

sults for the semi-infinite plate when the plate thickness

t/d= 0.02, 0.04, and 0.10. Table IX may be compared to

Fig. 3 to see the more pronounced effect that the ‘hedge

singularity” has in propagating errors in the neighborhood

of the singularity.

IV, SERIESTREATMENT AT REENTRANT CORNERS

In a paper published some 20 years ago, Motz[gl discussed

the boundary singularity problem in connection with the

solution of potential problems by relaxation methods. We

have followed Motz’s earlier work and used a series expan-

sion in circular harmonics to describe the field in the

neighborhood of a reentrant corner. This treatment is ap-

plicable to any wedge shaped reentrant corner including a

knife-edged boundary. Consider the infinite conducting
wedge shown in Fig. 4, where the potential += @Oon the

boundary surface. Using a polar coordinate system (r, o), the

wedge surfaces are defined by 0= O, 0=00, with the wedge

vertex located at r= O. The designation r= R simply repre-

sents a particular length (or interval) measured from the

vertex (r= O) to a point on the wedge surface. In the region

exterior to the wedge (r> O, 0<0< 00), the solution of

Laplaee’s equation can be expressed as an infinite series of

circular harmonics:

) P(r, 0)

~,,,,,,

r

o

()=0

7 ‘x
-x

POTENTIAL @ = @ ~

Fig. 4. Infinite conducting wedge.

The electric field intensity normal to the wedge surface is

given by

1 6’4

()
E=@e –——

‘r do

M n7r
~ CL (r)

()

n7r0
=—l% . ~((.. /eo1)l) ~os —

00
(14)

n=1 0

where de is a unit vector in the 0 direction, and 0= O or

o= 00 in (14). In applying (14) to the right-angle reentrant

corner (00= 3~/2), we elected to use four terms of (14) to

represent the normal electric field. Thus, at the surfaces 13=O

and 0=80 = 3m/2, (14) yields

Z(T, o) = y[clr-lls + c2d/3 + c3’r + c4r5/3j,

37r

()
72 r, j = – 3[clr-1/3 – W-113 + c3r – c4r5/3] (15)

where z and ~ are unit vectors. The coefficients of series of

the type (13) or (14) can be related to the finite-difference

solution in a variety of ways. The determination of the

“best” way is a study in itself. In the case of the right-angle

corner, the coefficients of ( 15) were determined by equating

(15) to the finite-difference value of \ &#v’&z\ at the locations

r= R and r= 2R on the surfaces 0= O and (3= 3r/2. This ele-
mentary method of determining the series coefficients was

the only one that was used and other methods were not in-

vestigated. When a symmetrical bend (g= b) is treated using

(15), Cz= cl= O and (15) reduces to a two term series because

the ~otential madient is symmetrical about the comer.. ,
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The surface charge per unit area on a conducting surface

k given by p.= &, where c is the permittivity of the medium

and E. is the electric field normal to the surface. As (15)

shows, the surface charge becomes infinite as r–1/s as r+O

at a 90 degree corner. The series (15) can be integrated term

by term to obtain a closed form expression for the charge

per unit length over the interval from r= R to the corner.

Let q(R) denote the charge per unit length over Os r< R,
hence

J

R
R 8+

g(li) = E ~.iidr = – t
so

— dr. (16)
o 0 tka

It follows from (15) and (16) that

3
q(R)

[ 1=e~R213 cl+;R213+~R413+~R2 ,
0=0 3 4

q(R) =
[

e;R’1’ C1–;R’l’+~R413_ c’ 1~R2 .
3

(17)
8=3711 2

The assumptions and approximations leading to (17) are

evident. The accuracy that can be achieved using (17) will

be a function of the mesh size h and the interval R. Referring

to Fig. 2(a), (17) was used to calculate the charge per unit

length about corner C’ and the result was compared to the

exact solution obtained from conformal mapping. The re-

sults are presented in Fig. 5 which shows the percent error

in q(R) as a function of the normalized interval R/h. Fig. 5
indicates that the minimum error in the representation (17)

may occur when R is approximately equal to b/4 and that

an error of less than 0.5 percent is quite feasible using (17).

Suppose that (17) is applied to an asymmetrical bend

where g is considerably different from b. As a result of

Fig. 5, we should expect the accuracy of q(R) to be consider-

ably different on the surfaces @=O and 0= 3m/2 because the

normalized intervals R/b and R/g are different. Surprisingly,

this is not the case, as is indicated in Fig, 6 which shows the

percent error in q(R) for a bend where g= 4b. ql and q’ denote

the charge on the horizontal and vertical surfaces, respec-

tively. Results obtained using both the five- and nine-point

operators are given in the figure. In contrast to Fig. 5, when

the interval R/h= 4 which corresponds to R= b/2 and

R= g/8, we see that the error in ql(R) and q2(R) is less than

0.1 percent provided that the five-point operator is used.

The series treatment described above was used to deter-

mine the total charge on the inner conductor of a square

coaxial transmission line. Because of symmetry, only one

quadrant of the cross section shown in Fig. 7 was treated

by the finite-difference method. The exact solution of this

configuration is available from conformal mapping. [Igl For

the geometry where AB= 2(CD), the capacitance per unit

length of the line is C= (10.234)~, where c is the permittivity

in farads per meter. Using a mesh division of b/h= 40
yielded 4719 interior nodes. Setting the residual test constant

m= I&G, the resulting machine time was 58 seconds. The

formulation (17) was used to calculate the charge over the
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interval 0< r< R, while the charge from r= R to the mid-

point of the boundary was calculated by numerical integra-

tion of the normal derivatives. The results are given in Fig. 7

which shows the percent error in C/e as a function of the

interval R/b over which the series treatment k applied.

Notice that the error was 1.85 percent for R/b = O, that is,

when the charge was determined by numerical integration

over the entire inner boundary surface. The error was re-

duced to 0.06 percent by means of the series treatment when

the interval 0.25 <R/b< 0.30 was used in the application

of (17).
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V. CONCLUSIONS

In the preceding work we have investigated, in some detail,

the problem of accuracy in the numerical finite-difference

solution of Laplace’s equation. Admittedly, the investigation

was specialized to the calculation of normal derivatives on

boundary surfaces near field singularities. The effect of the

mesh size and the lattice point residuals on the solution is

well established but some question remains concerning the

difference operator. In the situation considered here, where

normal derivatives are evaluated on boundaries near a singu-

larity, it would appear that the five-point operator is the

better choice. However, in the case of a well behaved

boundary value problem without boundary singularities, we

would expect the nine-point operator to yield the more accu-

rate results.

It has been shown that a finite series of circular harmonics

can provide a very accurate representation of the surface

charge on a wedge shaped boundary, and that the integral

of the charge can be accurately determined. It follows from

Gauss’s law that the characteristic impedance or capacitance

per unit length of a TEM line can be determined by inte-

grating C(– V@. m) over an arbitrary contour that encloses

one of the conductors. As a result, it is common practice in

mesh problems to select a contour which is removed from

edges or corners so as to avoid the errors introduced by the

boundary singularities. In order to calculate the attenuation

constant of the line, however, one must integrate the normal

field over the conductor boundaries. In such cases, one must

utilize some refinement such as the harmonic series treatment

in order to obtain accurate results with the finite-difference

method.
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