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The Accuracy of Finite-Difference Solutions
of Laplace’s Equation

JAMES W. DUNCAN, SENIOR MEMBER

Abstract—The cross sections of most TEM mode transmission lines
have reentrant corners or edges where the potential gradient is singular.
In this paper the accuracy of the finite-difference solution for the electric
field normal to the conductor boundary at a right-angle corner and at the
edge of a thin plate is examined. The accuracy of the finite-difference solu-
tion is related to the mesh length A, the magnitude of the lattice point
residuals, and the finite-difference operator which is used in place of the
Laplacian differential operator. The computing time required to solve the
mesh equations by the method of successive overrelaxation is specified.
The surface charge density in the neighborhood of the boundary singu-
Iarity is expressed as a truncated series of circular harmonics. As a result,
the integral of the surface charge can be calculated with very good ac-
curacy. The paper concludes by using the harmonic series treatment to
determine the capacitance per unit length of a square coaxial transmission
line.

I. INTRODUCTION

HE CHARACTERISTIC impedance and attenua-

tion constant of TEM mode transmission lines can be

determined with considerable facility by the method
of finite differences. Green! and Schneider® have pub-
lished solutions obtained by the finite-difference technique
for some particularly difficult stripline configurations. The
author has used this method to determine the even and odd
mode impedances of offset parallel-coupled strip transmis-
sion lines. These data were used in the design of a tapered-
line hybrid junction which operates over a frequency band-
width of 0.7 to 12.5 GHz.[*¥ Getsinger and Shelton!® have
published approximate solutions for infinitely thin conduc-
tors in the offset configuration which were obtained by the
mapping approximation method. Recently, Carson and
Cambrell® used a variational formula (field energy integral)
in conjunction with the finite-difference method to calculate
characteristic impedance.

When one treats a potential problem by the finite-differ-
ence method he is immediately faced with the perplexing
task of estimating the accuracy of the numerical solution.
For most problems of interest, there is no theoretical error
bound available because practical transmission lines usually
have boundaries with sharp edges or reentrant corners where
the potential gradient is singular. All estimates of the mesh
or “discretization error”” depend on the continuity of higher-
order partial derivatives and these estimates fail when the
gradient is singular on the boundary.!™ The finite-difference
solution is inaccurate near the field singularity and the error
spreads to neighboring mesh points. As a result, special treat-
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ment is required to obtain accurate results near reentrant
corners. This is particularly important, for example, when
calculating the attenuation constant of the line where one
must integrate the normal electric field over the conductor
boundaries.

In this paper we have investigated the accuracy of the
finite-difference solution for the potential gradient along the
conductor boundary near a reentrant corner. For this pur-
pose we have selected the infinite right-angle bend and the
semi-infinite plate between parallel ground planes because
each configuration may be solved exactly by means of con-
formal mapping. Thus the finite-difference solution and the
exact solution may be compared to determine the error dis-
tribution near the field singularity. Moreover, the accuracy
of the finite-difference solution may be exhibited as it relates
to the mesh length %, the absolute magnitude of the lattice
point residuals, and the finite-difference formulas which are
used in place of the Laplacian operator.

In order to improve the numerical solution in the vicinity
of reentrant corners we have followed Motz's earlier work!¥
and written a harmonic series expansion for the field in the
neighborhood of the singularity. The series expansion yields
the correct singular behavior of the field at the boundary
corner. The series coefficients are specified by equating the
series expansion to the potential gradient at selected points
on the boundary. Thus the normal electric field (or surface
charge density) is accurately determined in the entire neigh-
borhood of the corner and the integral of the charge density
can be calculated to an accuracy of a fraction of a percent.
The paper concludes by using the harmonic series treatment
to arrive at the capacitance per unit length of a square co-
axial transmission line. The results are compared to the
exact solution available from conformal mapping,.

I1. THE FINITE-DIFFERENCE METHOD

The electrical parameters of the TEM mode transmission
line follow from the solution of Laplace’s equation
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over the two dimensional domain comprising the transverse
cross section of the line.'*™ The approximate solution of
Laplace’s equation by the finite-difference method is effected
by superposing a square lattice or mesh over the region and
solving the system of equations for the potential ¢(x;, yi) at
the discrete nodes which are the intersection points of the
lattice. In Fig. 1 we show a portion of the square mesh using
a simple subscript notation to identify the lattice points of
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Fig. 1. Finite-difference lattice.

the subregion. The coordinates (x;, y,) of a lattice point are
defined by
z; = X9 + Jh,

yk:yo_l_kh: j)k=0;i1:i27"') (2)

where (xo, yo) is an arbitrary origin for the “mesh coordi-
nates” (j, k) and A is the mesh length between adjacent lat-
tice points. By definition ¢; ; is the potential at node (x;, yx)
and, for example, ¢;11,;—1 is the potential at the node
(xj+h, yr—h).

The five-point Laplace difference operator is defined

1
A®Y = W (i1t + ipsr + Sra1 + Se1h — 4051). (3)

The nine-point operator, which includes the potentials at
the four diagonal lattice points, is defined

1
A®¢ = o [4(ps16 + bips1 + birre + big1)

+ (Pi—1.4—1 F Pirthr1 + P11
+ bir1e-1) — 200, 4)

Expressing the node potentials in infinite series using Tay-
lor’s formula, Kantorovich and Krylovi' derive the follow-
ing expansions for the five- and nine-point operators:
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Because ¢ is harmonic and satisfies A¢ =0, (5) indicates that
the error committed in writing A®¢=0 to determine ¢;, is
of order %2 as A tends to zero. Correspondingly, (6) indicates
an error of order 4% in A®¢=0. However, both (5) and (6)
assume the continuity of higher-order partial derivatives of
¢ over the square region [x;—h, x;+h], [ys—h, yi+h]. Be-
cause the potential gradient is singular at a reentrant corner,
(5) and (6) are not applicable at the nodes immediately adja-
cent to the corner and it is not apparent which operator
would yield the more accurate results. As noted, the effect
of the boundary singularity spreads to neighboring mesh
points and, in terms of #, the order of magnitude of the dis-
cretization error is unknown. To quote from Forsythe and
Wasow,!# “There is some numerical evidence that re-entrant
angles may actually modify the order of magnitude of the
discretization error globally.” This view is substantiated in
results presented in Section III, where it is shown that the
five-point formula yielded solutions more accurate than the
nine-point formula when calculating the potential gradient
about a 90 degree corner.
The formula for computing the potential ¢;, using the
approximation A®¢=0 follows from (3):

b = tdi1k F birs + die1 + dirrel. (7

The system of equations generated by (7) was solved by the
Young-Frankel method of successive overrelaxation.!3.3
The acceleration parameter « which appears in the succes-
sive overrelaxation formula was determined in the course of
iteration as proposed by Carré.!'4 The potential at each lat-
tice point was computed in sequence by advancing from the
bottom to the top of the mesh in each column of nodes and
from left to right in successive columns. A complete scan-
ning of the region constitutes one iteration cycle. Let the
superscript (n) denote the current iteration cycle and, there-
fore, (n—1) denotes the previous cycle. As a result of the lat-
tice point scanning sequence, the successive overrelaxation
formula for A®¢ reads

(r) (n—1)

) (n—1)
die = (1 — w)diz

[5)
-+ i [$i-1k + Diksr

(n) (n—l)]

+ &1+ Divak (8)

For the five-point operator, the residual §, ; at an interior
node (x;, yx) is defined

8in = (Pm1p T Pipr1 + Pii—1 + Pir1e — 4d50). (9)

The iterative process was terminated by requiring that all
node residuals satisfy

|65 <m (10)
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where the positive constant m=10-7, with p in the range
2<p<6. The maximum boundary potential for the regions
was unity. Thus, the residuals were reduced to a magnitude
of from 1.0 to 0.0001 percent of the maximum boundary po-
tential. Expressions similar to (7), (8), and (9) for the oper-
ator A®¢ follow from (4).

The mesh error, which is a function of the mesh length 4,
occurs because the finite-difference operator is used in place
of the Laplacian. In addition to the mesh error, the finite-
difference solution is subject to “iteration error” because the
system of linear equations is not solved exactly by the itera-
tive process. Let p be the radius of a circle with center at
node (xq, ¥o) Which just encloses the region of the mesh prob-
lem. Milne!™® shows that if the maximum residual laj, k[mx
does not exceed a positive quantity i, the maximum error
in the iterative solution does not exceed mp?/4h? for the five-
point operator and mp?/24h? for the nine-point operator.
These results indicate that as one uses a finer mesh (larger
p/h) in order to reduce the mesh error, the maximum resid-
val m must be decreased proportionately (leading to more
iteration cycles) in order to satisfy the same iteration error
bound.

III. COMPARISON OF SOLUTIONS

With the preceding discussion of the error problem in
mind, we shall compare the numerical finite-difference solu-
tion and the exact solution obtained from conformal map-
ping for the two geometrical cross sections shown in Fig. 2.
The characteristic dimensions of the infinite right-angle bend
and the semi-infinite plate between conducting planes, as
well as the boundary conditions on the potential ¢, are given
in the figure. The exact solution of Laplace’s equation for
each boundary value problem is obtained by applying the
Schwarz-Christoffel transformation to the respective z-plane
polygon.l8l

We shall examine the electric field intensity |d¢/dn| nor-
mal to the conducting boundary Q’'C’P’ of the right-angle
bend. The field intensity is singular at the 90 degree re-
entrant corner which is vertex C’. In order to carry out the
finite-difference method, the potential must be specified at
all nodes on the boundary surrounding the region. Thus
¢=0 at nodes along QCP and ¢=1 at nodes along Q'C'P’.
A linear potential distribution progressing from zero to unity
was specified for the nodes along boundaries PP’ and QQ’.
As a result, the potential gradient at vertices P’ and Q' has
the value 1/b and 1/g, respectively. If we then specify the
side lengths CP and CQ by the relations

CP =g + 2.7b,

CQ =b+4 27 (11)
it results that the potential gradient at the locations P’ and
Q' is in error by less than 0.01 percent of the exact solution.

In the case of the semi-infinite plate between parallel
planes, we shall examine the potential gradient normal to
the boundary surface CD. Because of the symmetry of the
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Fig. 2. (a) Infinite right-angle bend. (b) Semi-infinite
plate between parallel planes.

cross section, the finite-difference procedure may be applied
to only one-half of the figure, the polygon ABCDEF, for
example. A linear potential distribution was prescribed for
nodes along boundary BC with the length CD=2.7 BC
=2.7(d—1)/2. The potentials at nodes along EF were de-
termined in the course of iteration under the condition that
EF is a magnetic wall or plane of symmetry of the potential
field. The potentials at nodes along AF were set equal to
zero. By specifying the length EF=2.84, it follows from the
conformal mapping solution that the error in the node poten-
tials along AF is not greater than 0.01 percent.

The potential gradient normal to the boundary surface
was calculated using a five-point formula given by Bickley,*"

a 1
’_¢‘ = [50¢0 — 96¢; 1+ 72¢: — 32¢5 + 6¢4] (12)
m 24h

where ¢, ¢1, - - - , ¢4 are the potentials at successive nodes
in the direction normal to the boundary with ¢, designating
the boundary potential. The error in this formula is of order
75, where the mesh length 4 is the tabular interval.

The right-angle bend was solved by successive overrelaxa-
tion using the five-point and nine-point difference operators.
Typical results are given in Fig. 3 which shows the percent
error in the potential gradient normal to the boundary
Q'C'P’ for an asymmetrical bend where g=2b and b/h=16.
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Fig. 3. Percent error in |9¢/dn| about a 90 degree corner (g=2b).

The abscissa is distance measured from the corner in terms
of the mesh length /. The surprising result evident in Fig. 3
was substantiated in all calculations of the right-angle bend,
that is, that the five-point operator yielded the more accurate
solutions. When the semi-infinite plate was treated, the two
operators were not compared, only the five-point operator
was used. Fig. 3 also serves to demonstrate the increasing
error in the finite-difference solution as the corner singularity
is approached (r, p—0).

We are interested in the accuracy that can be realized for
a given amount of computing time. The machine time re-
quired by the finite-difference method is directly proportional
to the number of interior nodes which are scanned per
iteration cycle and, of course, the number of cycles that are
necessary to satisfy the residual criterion. The number of
interior nodes is a function of the mesh division. When the
mesh length is halved in order to reduce the mesh error, the
number of interior nodes increases by more than a factor of
4, and the computing time increases proportionately. More-
over, when the mesh is made finer, more iteration cycles are
necessary to satisfy the same residual criterion. In the tables
which follow, we shall examine the accuracy of the finite-
difference solution and the resultant computing time as they
are determined by the mesh size and the residual test con-
stant m=10—7. All calculations were carried out using the
five-point operator.

In Table T we show the percent error in [64&/671[ as a
function of the mesh size for the symmetrical right-angle
bend (g=b5). The potential gradient is calculated at selected
positions #/b along the boundary C’P’. The residual test
constant m=10%. The column b/h= = corresponds to an
estimate of the solution for zero mesh length and was ob-
tained using Richardson’s method of extrapolation!'8 in
which we assume that the mesh error is proportional to A2,
Obviously, this procedure is questionable for problems with
reentrant corners. The extrapolated solution, which was cal-
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culated from the b/h=16 and b/h= 32 solutions, was found
to be only slightly improved over the /A= 32 result.

The machine times required to effect solutions for various
mesh divisions are given in Table II, which shows the number
of interior nodes for a given b/ and the number of iteration
cycles necessary to satisfy the residual test lBj,k[ <104
Notice that the computing times of Table II do not apply
to the results shown in Table I which were obtained under
the condition m=10"*. The times shown include all of the
calculations which were required to compare the numerical
and the exact solutions. The computer was an IBM 7094.
Notice how the number of iteration cycles increases as the
mesh is made finer in order to satisfy the same residual
criterion m=10"%,

The effect of m on the finite-difference solution is indicated
in Table IIl which shows the percent error in |d¢/on| at
various positions »/b for three values of m. These data are
for the mesh division b/A=32 which yields 6355 interior
nodes. Notice that the normal gradients are more accurate
when m=10-* than when m=10-%, although the error de-
creases monotonically with increasing » only for the case
m=10"% When the coarse mesh b/A=8 with 357 interior
nodes was used, the solutions for m=10-* and 10—t were
identical. The case m=10"% was not calculated but pre-
sumably it was the same.

The computing time varies substantially with » when a
relatively fine mesh is used. Table 1V shows computing time
as a function of m for the mesh division /A= 32. Notice that
the time is doubled by decreasing m from 10~ to 10~ al-
though Table III shows that 7= 10—*yielded the more accu-
rate results. When the coarse mesh b/A=8 was used, the
number of iteration cycles was essentially the same for
m=10"* and m= 1075, consequently, the machine time was
identical.

In Tables V through VIII, we present information similar
to the foregoing but the data pertain to the semi-infinite plate
between parallel planes. In all cases the plate thickness
t=d/10. Table V shows the percent error in |0¢/an| at
selected positions #/d along the boundary CD. The residual
test constant m=107%, The column d/h= « corresponds to
the extrapolated solution (assuming mesh error of order 42)
obtained from the d/h=20 and d/h=40 solutions. As may
be seen, the extrapolated solution is only slightly more accu-
rate than the d/h= 40 solution.

The number of iteration cycles and the machine time
necessary to obtain the solutions of Table V are shown in
Table VI. Notice that the computing time increases by a
factor of 13 when the mesh division changes from d/2=40
to d/h=100. However, as Table V shows, the reduction in
mesh error effected with d/A=100 is not commensurate
with the inordinate increase in machine time.

Table VII shows the effect of m, on the accuracy of the
solution for the mesh division d/h= 100 which yields 19 318
interior nodes. The distribution of error with m is quite
similar to the data of Table III which applies to the right-
angle bend with 6355 interior nodes. Notice that m=10+
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TABLE 1 TABLE V
PERCENT ERROR IN |3¢/0n| RIGHT-ANGLE BEND g=b m=10-% PERCENT ERROR IN |3¢/0n|, SEMI-INFINITE PLATE, £=d/10, m= 10~
\b/h dfh
8 16 32 © 20 40 100 [
/b N r/d N
0.125 1.88 1.00 0.832 0.775 0.05 2.506 1.241 0.778 0.819
0.250 0.689 0.695 0.344 0.228 0.10 1.088 0.879 0.317 0.809
0.375 0.570 0.394 0.174 0.100 0.15 0.866 0.522 0.167 0.408
0.500 0.410 0.227 0.098 0.055 0.20 0.629 0.318 0.099 0.214
0.750 0.169 0.084 0.036 0.021 0.25 0.431 0.202 0.062 0.125
1.000 0.063 0.032 0.014 0.0076 0.30 0.289 0.131 0.040 0.079
0.35 0.192 0.087 0.025 0.052
0.40 0.128 0.058 0.016 0.035
TABLE II
TABLE VI

NuMBER OF ITERATION CyCLES AND COMPUTING TIME,

RIGHT-ANGLE BEND, g=b, m=10"* NUMBER oF ITERATION CYCLES AND CoMPUTING TIME, SEMI-

INFINITE PLATE, t=d/10, m=10"t

bJk Interior Iteration Time

Nodes Cycles (s) d/h Interior Iteration Time

/ Nodes Cycles (s)

8 357 49 5

16 1545 73 25 20 750 97 7

20 2413 85 43 40 3053 217 53

32 6355 109 48 100 19 318 493 702

TABLE III TABLE VII
PERCENT ERROR IN |34 /3n|, RIGHT-ANGLE BEND, g=b, b/h=32 PeRCENT ERROR IN ]3¢ /0n|, SEMI-INFINITE PLATE, r=d/10, d/h=100
\ m m
102 10— 10— 102 10— 10—
r/b \ r/d
0.0625 0.406 0.871 1.131 0.02 5.43 0.688 1.25
0.125 0.139 0.593 0.832 0.04 5.10 0.463 0.960
0.1875 0.139 0.308 0.523 0.06 4.94 0.184 0.631
0.250 0.285 0.152 0.344 0.08 4.72 0.031 0.435
0.3125 0.354 0.072 0.240 0.10 4.46 0.048 0.317
0.375 0.380 0.030 0.174 0.12 4.19 0.089 0.241
0.4375 0.379 0.008 0.129 0.14 3.94 0.112 0.188
0.500 0.361 0.004 0.098 0.16 3.70 0.123 0.150
0.5625 0.332 0.010 0.076 0.18 3.47 0.126 0.122
0.625 0.295 0.011 0.059 0.20 3.26 0.126 0.099
0.6875 0.256 0.011 0.046 0.30 2.39 0.100 0.040
0.750 0.219 0.013 0.036 0.40 1.81 0.072 0.016
TABLE IV TABLE VIII

NuMBER OF ITERATION CyCLES AND CoMPUTING TIME,
RiGHT ANGLE BEND, g=5, b/h=32

NumMBER OF ITERATION CYCLES AND COMPUTING TIME, SEMI-
INFINITE PLATE, t=d/10, d/h=100

Interior Iteration Time Interior Iteration Time

m Nodes Cycles (s) m Nodes Cycles (min)

102 6355 97 44 102 19 318 97 3.10

10—+ 6355 109 48 10— 19 318 205 5.45
10— 6355 169 96 108 19 318 493 11.7
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TABLE IX
PERCENT ERROR IN | 8¢ /n|, SEMI-INFINITE PLATE, d/h=100, m=10"¢
t/d
0.02 0.04 0.10
r/h
1 2.01 2.65 2.42
2 1.76 1.46 1.25
3 1.62 1.35 1.14
4 1.39 1.15 0.96
5 1.15 0.95 0.78
6 0.95 0.78 0.63
7 0.80 0.65 0.52
8 0.68 0.55 0.43
9 0.59 0.47 0.37
10 0.51 0.41 0.32

yields the more accurate results until » measures 18 mesh
lengths from the plate edge (r/d=0.18), thereafter, the solu-
tions for m=10-% are more accurate but the difference is not
particularly significant. The difference in computing time
between the cases m=10—* and m=10-¢ is, however, very
significant as is evident in Table VIII, Obviously, m=10-2
is not an adequate residual requirement for a mesh division
which yields thousands of lattice points. In contrast to
Table VII, when the coarse mesh d/h=20 was used to solve
the semi-infinite plate problem, the solutions for m=10-2,
10—, and 10-¢ were almost identical over the entire range of
r which was investigated (0<r/d<0.5). The computing time
was about 7 seconds for each value of m when d/h=20.
Lastly, in Table IX, we show the error distribution that re-
sults for the semi-infinite plate when the plate thickness
t/d=0.02, 0.04, and 0.10. Table IX may be compared to
Fig. 3 to see the more pronounced effect that the “edge
singularity” has in propagating errors in the neighborhood
of the singularity.

1V. SErRIES TREATMENT AT REENTRANT CORNERS

In a paper published some 20 years ago, Motz!¥ discussed
the boundary singularity problem in connection with the
solution of potential problems by relaxation methods. We
have followed Motz’s earlier work and used a series expan-
sion in circular harmonics to describe the field in the
neighborhood of a reentrant corner. This treatment is ap-
plicable to any wedge shaped reentrant corner including a
knife-edged boundary. Consider the infinite conducting
wedge shown in Fig. 4, where the potential ¢=¢, on the
boundary surface. Using a polar coordinate system (r, 8), the
wedge surfaces are defined by 6=0, 6=0,, with the wedge
vertex located at r=0. The designation r=R simply repre-
sents a particular length (or interval) measured from the
vertex (=0) to a point on the wedge surface. In the region
exterior to the wedge (>0, 0<60<4,), the solution of
Laplace’s equation can be expressed as an infinite series of
circular harmonics:

i 0
é(r,0) = ¢o + D a.r®/0 gin (?) (13)

n=1 ¢
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Fig. 4.

Infinite conducting wedge.

The electric field intensity normal to the wedge surface is
given by

-a(-1 %)
E=g|{———
r 06

i nw nart
= — G5 D, Qn|~— ) r@ri—1 cos { —
n=1 60 00

where dy is a unit vector in the # direction, and =0 or
9=0, in (14). In applying (14) to the right-angle reentrant
corner (fy=237/2), we elected to use four terms of (14) to
represent the normal electric field. Thus, at the surfaces §=0
and 60=0y=13w/2, (14) yields

I

(14)

E(r, 0) = cr1/3 + corll® + cor + cqrsl3),

— [ 3w
E <r, —) =
2
where % and § are unit vectors. The coefficients of series of
the type (13) or (14) can be related to the finite-difference
solution in a variety of ways. The determination of the
“best” way is a study in itself. In the case of the right-angle
corner, the coefficients of (15) were determined by equating
(15) to the finite-difference value of ] d¢/ 6n] at the locations
7= R and »=2R on the surfaces §=0 and 0= 3x/2. This ele-
mentary method of determining the series coefficients was
the only one that was used and other methods were not in-
vestigated. When a symmetrical bend (g=>5) is treated using
(15), c=c¢,=0 and (15) reduces to a two term series because
the potential gradient is symmetrical about the corner.

— e 13 — eyrlit + cgr — cgr53]  (15)
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The surface charge per unit area on a conducting surface
is given by p,= ¢E,, where e is the permittivity of the medium
and E, is the electric field normal to the surface. As (15)
shows, the surface charge becomes infinite as %% as »—0
at a 90 degree corner. The series (15) can be integrated term
by term to obtain a closed form expression for the charge
per unit Iength over the interval from r=R to the corner.
Let ¢(R) denote the charge per unit length over 0<r<R,

hence
R_ R a¢
q(R) == ef E-fdr = — ef <—>d1‘.
0 0 o

It follows from (15) and (16) that

(16)

q(R)

6=0

=¢ iRzla [01+2R2/3+2R4/3+2 Rz:l
2 2 3 4 ’

q(R) = *3~R2/3 [CI—ERW‘*—{—ER‘“:"—ER?:‘ .1
2 2 3 4

f=3r/ 2

The assumptions and approximations leading to (17) are
evident. The accuracy that can be achieved using (17) will
be a function of the mesh size / and the interval R. Referring
to Fig. 2(a), (17) was used to calculate the charge per unit
length about corner C’ and the result was compared to the
exact solution obtained from conformal mapping. The re-
sults are presented in Fig. 5 which shows the percent error
in g(R) as a function of the normalized interval R/A. Fig. 5
indicates that the minimum error in the representation (17)
may occur when R is approximately equal to /4 and that
an error of less than 0.5 percent is quite feasible using (17).
Suppose that (17) is applied to an asymmetrical bend
where g is considerably different from b. As a result of
Fig. 5, we should expect the accuracy of g(R) to be consider-
ably different on the surfaces =0 and #=3r/2 because the
normalized intervals R/b and R/g are different. Surprisingly,
this is not the case, as is indicated in Fig. 6 which shows the
percent error in g(R) for a bend where g=4b. ¢, and ¢, denote
the charge on the horizontal and vertical surfaces, respec-
tively. Results obtained using both the five- and nine-point
operators are given in the figure. In contrast to Fig. 5, when
the interval R/A=4 which corresponds to R=5/2 and
R=g/8, we see that the error in ¢:(R) and g(R) is less than
0.1 percent provided that the five-point operator is used.
The series treatment described above was used to deter-
mine the total charge on the inner conductor of a square
coaxial transmission line. Because of symmetry, only one
quadrant of the cross section shown in Fig. 7 was treated
by the finite-difference method. The exact solution of this
configuration is available from conformal mapping.® For
the geometry where AB=2(CD), the capacitance per unit
length of the line is C=(10.234)¢, where ¢ is the permittivity
in farads per meter. Using a mesh division of b/h=40
yielded 4719 interior nodes. Setting the residual test constant
m=10"%, the resulting machine time was 58 seconds. The
formulation (17) was used to calculate the charge over the
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interval 0<r<R, while the charge from r=R to the mid-
point of the boundary was calculated by numerical integra-
tion of the normal derivatives. The results are given in Fig. 7
which shows the percent error in C/e as a function of the
interval R/b over which the series treatment is applied.
Notice that the error was 1.85 percent for R/b=0, that is,
when the charge was determined by numerical integration
over the entire inner boundary surface. The error was re-
duced to 0.06 percent by means of the series treatment when
the interval 0.25<R/b<0.30 was used in the application
of (17).
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V. CONCLUSIONS

In the preceding work we have investigated, in some detail,
the problem of accuracy in the numerical finite-difference
solution of Laplace’s equation. Admittedly, the investigation
was specialized to the calculation of normal derivatives on
boundary surfaces near field singularities. The effect of the
mesh size and the lattice point residuals on the solution is
well established but some question remains concerning the
difference operator. In the situation considered here, where
normal derivatives are evaluated on boundaries near a singu-
larity, it would appear that the five-point operator is the
better choice. However, in the case of a well behaved
boundary value problem without boundary singularities, we
would expect the nine-point operator to yield the more accu-
rate results.

It has been shown that a finite series of circular harmonics
can provide a very accurate representation of the surface
charge on a wedge shaped boundary, and that the integral
of the charge can be accurately determined. It follows from
Gauss’s law that the characteristic impedance or capacitance
per unit length of a TEM line can be determined by inte-
grating ¢(— V¢-#%) over an arbitrary contour that encloses
one of the conductors. As a result, it is common practice in
mesh problems to select a contour which is removed from
edges or corners so as to avoid the errors introduced by the
boundary singularities. In order to calculate the attenuation
constant of the line, however, one must integrate the normal
field over the conductor boundaries. In such cases, one must
utilize some refinement such as the harmonic series treatment
in order to obtain accurate results with the finite-difference
method.
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